Manning College of Information & Computer Sciences

PowerPhone: Unleashing the Acoustic Sensing Capability of Smartphones Shirui Cao*, Dong Li*, Sunghoon Ivan Lee[†], Jie Xiong[†]

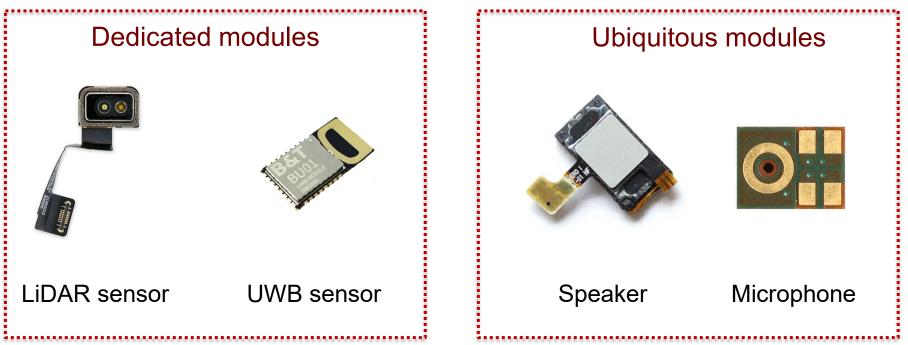
ACM MobiCom 2023

Manning College of Information & Computer Sciences

Wireless Sensing on Smartphones

Wireless sensing brings more intelligence to smartphones

Acoustic sensing is the *most extensively* studied sensing modality



LiDAR sensing

UWB sensing

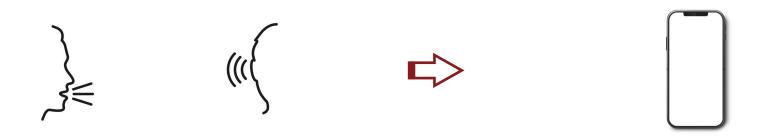
Acoustic sensing

Advantage One: Wide Availability on Smartphones

Advantage Two: Fine Sensing Granularity

Acoustic signals enable applications that support fine sensing granularity

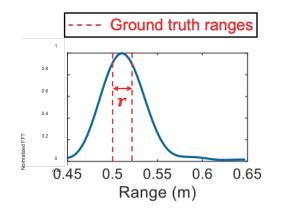
Finger tracking


Respiration monitoring

Eye blink detection

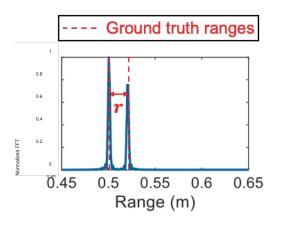
Fundamental Limitation

Acoustic sensing performance is constrained by the limited sampling rate


Human speaking and hearing frequency < 20 *kHz*

Sampling rates for speaker and microphone 44.1 *kHz* or 48 *kHz*

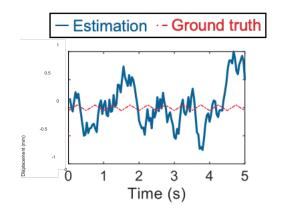
Great Benefits of Higher Sampling Rates

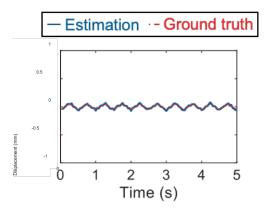

Increasing sampling rate can improve the sensing resolution

Sampling rate = 48 *kHz* Two targets are indistinguishable

Sampling rate = 192 *kHz* Two targets are distinguishable

UMassAmherst

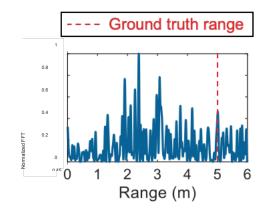

Great Benefits of Higher Sampling Rates


Increasing sampling rate can boost the sensing granularity

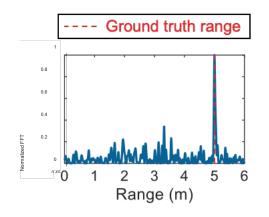
Sampling rate = 48 *kHz* Cannot capture 0.1 *mm* displacement Sampling rate = 192 *kHz*

UMassAmherst

Successfully capture 0.1 mm displacement



Great Benefits of Higher Sampling Rates


Increasing sampling rate can increase the **sensing range**

Sampling rate = 48 *kHz* Cannot sense a target at 5 m

Sampling rate = 192 *kHz* Successfully sense the target at 5 m

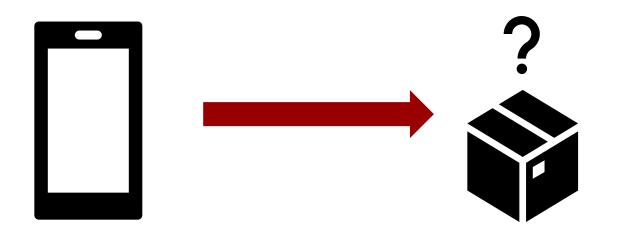
UMassAmherst

Opportunities Hidden in Smartphone Hardware

We analyzed more than **100** smartphones and found their hidden capabilities

			January M			
Brand	Lineup	# of Models	Audio Codec	RX f_s	Speaker Amplifier	$TX f_s$
Google	Pixel 4	1	Knowles IA8505	192 kHz	Cirrus Logic CS35L36	384 kHz
Google	Pixel 4a/5/5a	3	Realtek RT5514	192 kHz	Cirrus Logic CS35L41	192 kHz
Samsung	Galaxy S21 lineup (Exynos)	4	Exynos 2100 (integrated)	384 kHz	Cirrus Logic CS35L41	192 kHz
Samsung	Galaxy A50 lineup	2	Exynos 9610 (integrated)	384 kHz	Cirrus Logic CS35L41	192 kHz
Samsung	Galaxy A10/A20/A30/A40 lineup	10	Samsung COD3035x	192 kHz	Silicon Mitus SMA1301	192 kHz
Samsung	Galaxy S9 lineup (Snapdragon)	2	Qualcomm WCD9341	192 kHz	Maxim MAX98512	192 kHz
Samsung	Galaxy S10 lineup (Exynos)	5	Cirrus Logic CS47L93	192 kHz	Cirrus Logic CS35L40	192 kHz
Xiaomi	Redmi K40 lineup	4	Qualcomm WCD9380	192 kHz	Cirrus Logic CS35L41	192 kHz
Xiaomi	Mi 9/10/11/12/13 lineup	24	Qualcomm WCD93xx	192 kHz	Cirrus Logic CS35L41	192 kHz
Xiaomi	Redmi Note 8/8T/9Pro lineup	3	Qualcomm WCD937x	192 kHz	TI TAS2562	96 kHz
Huawei	P40 lineup	3	HiSilicon Hi6405	384 kHz	TI TAS2564	192 kHz
Huawei	Mate20/30/40, P30, Nova6/7 lineup	24	HiSilicon Hi6xxx series	192 kHz	NXP TFA9874	96 kHz
ASUS	Zenfone 9	1	Qualcomm WCD9380	192 kHz	Qualcomm WSA8835	384 kHz
Motorola	Edge (2020)	1	Cirrus Logic CS47L35	192 kHz	Cirrus Logic CS35L41	192 kHz
Sony	Xperia 1/5 II/III, Xperia 10 lineup	6	Qualcomm WCD93xx	192 kHz	Cirrus Logic CS35L41	192 kHz
Vivo	iQOO Neo3 5G	1	Qualcomm WCD9341	192 kHz	Maxim MAX98928	48 kHz
OnePlus	OnePlus 6 lineup	2	Qualcomm WCD9341	192 kHz	Maxim MAX98928	48 kHz
OnePlus	OnePlus 9 lineup	3	Qualcomm WCD9385	192 kHz	NXP TFA98xx series	48 kHz
Орро	Realme X50 lineup	4	Qualcomm WCD9385	192 kHz	NXP TFA98xx series	48 kHz

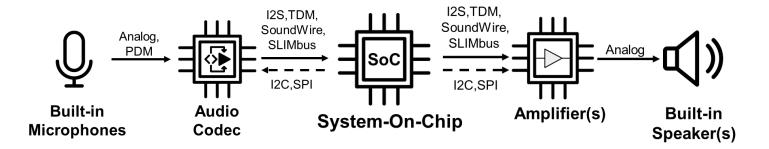
Can we break the audio sampling rate limits of a smartphone, to unleash its hidden acoustic sensing capability?


Introducing PowerPhone

- A pure software reconfiguration
- Support higher sampling rates (E.g., 192 kHz)
- No extra hardware required

Manning College of Information & Computer Sciences

First Challenge: Black Box Hardware Structure

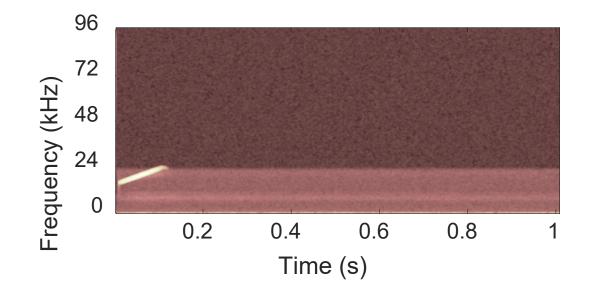


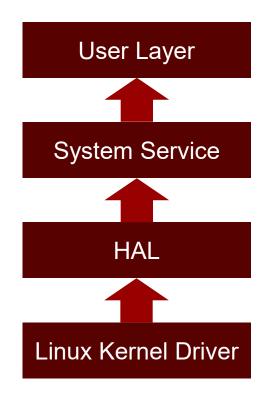
Hardware Fundamentals

- Electric schematics are proprietary, but the Linux Kernel are open-source
- We reverse-engineered smartphones through the Device-Tree-Overlays (DTOs) in their Linux kernel
- DTO allows us to know the hardware topology inside the smartphones without physically teardown

Hardware Fundamentals

 We summarize an audio hardware topology based on 100+ smartphones




Driver Reconfiguration

- Configure the Phase-Lock Loop (PLL) to generate correct leading bit-clock
- Modify the registers inside codec and amplifier through SPI or I2C to support 192 kHz sampling rates
- Change Direct-Memory-Access (DMA) bit-rate and memory mapping size

Manning College of Information & Computer Sciences

Second Challenge: Sampling Rates Remain at 48 *kHz*

Manning College of Information & Computer Sciences

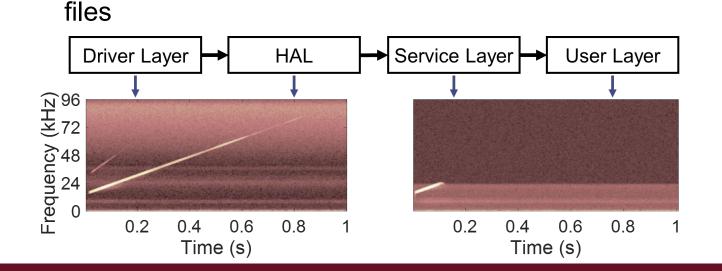
Analysis

Multi-layer Signal Chain

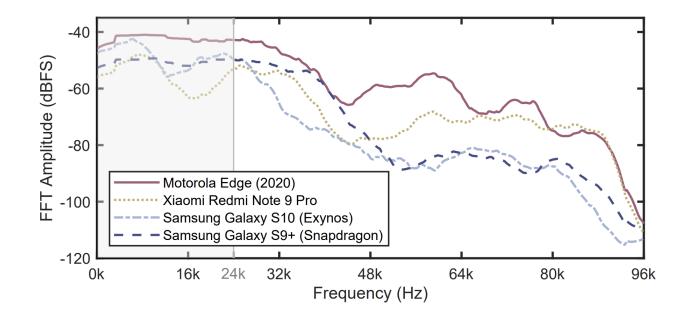
- Android OS has many layers in its audio chain
- We summarized them into four layers
 - Linux Kernel Driver Layer
 - Hardware Abstraction Layer
 - System Service Layer
 - User Layer (Public API)
- We need to figure out which layer down-sampled the audio stream 16

Our Solution: ^U Layer-By-Layer Analysis

UMassAmherst & Compute

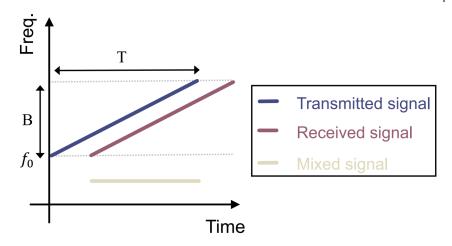

Manning College of Information & Computer Sciences

- Find out who down-sampled the audio stream is not trivial, especially the HAL is in binary form
- To access the output of the Linux Kernel Driver, we ported Ubuntu Touch OS to the smartphone
- To access the output of the HAL and System Service Layer, we compiled and built our own Android OS based on LineageOS

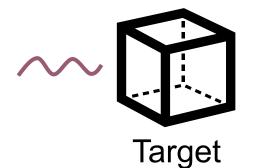

Our Findings

- We found that **System Service Layer** down-sampled the audio
- We fixed such behavior by changing hard-coded configuration

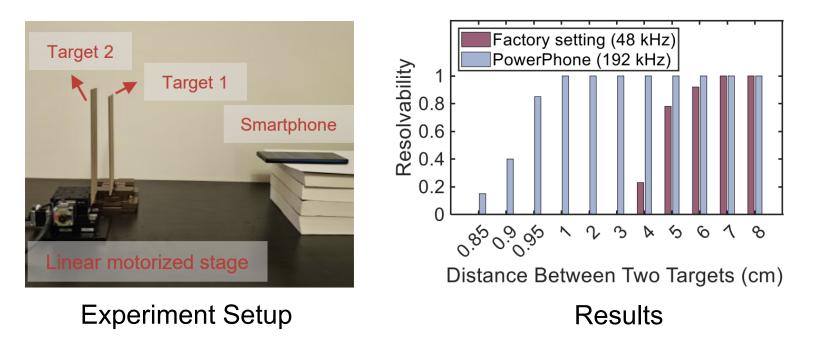
Manning College of Information & Computer Sciences


Frequency Responses

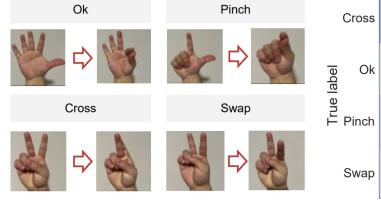
Chirp Signals


UMassAmherst

Manning College of Information & Computer Sciences



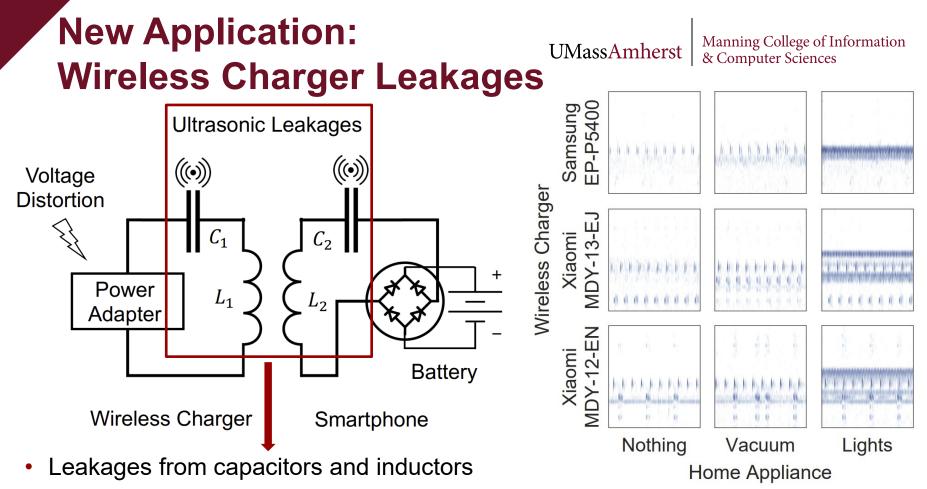
Smartphone


Manning College of Information & Computer Sciences

Resolution Benchmark

Manning College of Information & Computer Sciences

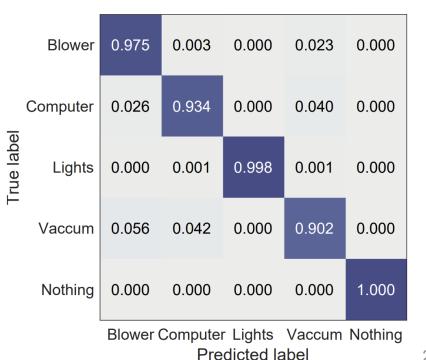
Resolution Field Study


Cross	0.490	0.145	0.200	0.165	
label Ok	0.075	0.705	0.090	0.130	
L Pinch	0.260	0.085	0.600	0.055	
Swap	0.155	0.110	0.090	0.645	
	Cross Ok Pinch Predicted label				

Cro	oss	0.865	0.075	0.035	0.025
label	Ok	0.045	0.925	0.020	0.010
True label Liu	nch	0.010	0.045	0.920	0.025
Sw	ap	0.035	0.005	0.060	0.900
	l	Cross Ok Pinch Predicted label		Swap	

Gestures

Factory Settings (48 kHz)


PowerPhone (192 kHz)

New Application: Results

- Classification using Vision
 Transformer (ViT) network
- Overall accuracy: 96.2%

Manning College of Information & Computer Sciences

Conclusion

- Reconfigured smartphone sampling rates to 192kHz and open-sourced implementation
- Enhanced sensing resolution (1 cm), granularity (2 um), and range (6 m)
- Enabling many new ultrasonic sensing applications, e.g., home appliance monitoring

Check Our Website!

- Step-by-step instruction, source codes, system images, etc.
- Future updates / new supported smartphones.
- https://powerphone.github.io

UMassAmherst Manning College of Information & Computer Sciences

COMPUTING FOR THE COMMON GOOD

Shirui Cao shiruicao@cs.umass.edu github.com/charlescao460